ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfse GIF version

Theorem nfse 4096
Description: Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfse.r 𝑥𝑅
nfse.a 𝑥𝐴
Assertion
Ref Expression
nfse 𝑥 𝑅 Se 𝐴

Proof of Theorem nfse
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-se 4088 . 2 (𝑅 Se 𝐴 ↔ ∀𝑏𝐴 {𝑎𝐴𝑎𝑅𝑏} ∈ V)
2 nfse.a . . 3 𝑥𝐴
3 nfcv 2219 . . . . . 6 𝑥𝑎
4 nfse.r . . . . . 6 𝑥𝑅
5 nfcv 2219 . . . . . 6 𝑥𝑏
63, 4, 5nfbr 3829 . . . . 5 𝑥 𝑎𝑅𝑏
76, 2nfrabxy 2534 . . . 4 𝑥{𝑎𝐴𝑎𝑅𝑏}
87nfel1 2229 . . 3 𝑥{𝑎𝐴𝑎𝑅𝑏} ∈ V
92, 8nfralxy 2402 . 2 𝑥𝑏𝐴 {𝑎𝐴𝑎𝑅𝑏} ∈ V
101, 9nfxfr 1403 1 𝑥 𝑅 Se 𝐴
Colors of variables: wff set class
Syntax hints:  wnf 1389  wcel 1433  wnfc 2206  wral 2348  {crab 2352  Vcvv 2601   class class class wbr 3785   Se wse 4084
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rab 2357  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-se 4088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator