ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nrex GIF version

Theorem nrex 2453
Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
Hypothesis
Ref Expression
nrex.1 (𝑥𝐴 → ¬ 𝜓)
Assertion
Ref Expression
nrex ¬ ∃𝑥𝐴 𝜓

Proof of Theorem nrex
StepHypRef Expression
1 nrex.1 . . 3 (𝑥𝐴 → ¬ 𝜓)
21rgen 2416 . 2 𝑥𝐴 ¬ 𝜓
3 ralnex 2358 . 2 (∀𝑥𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥𝐴 𝜓)
42, 3mpbi 143 1 ¬ ∃𝑥𝐴 𝜓
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 1433  wral 2348  wrex 2349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-5 1376  ax-gen 1378  ax-ie2 1423
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-ral 2353  df-rex 2354
This theorem is referenced by:  rex0  3265  iun0  3734  frec0g  6006  nominpos  8268  sqrt2irr  10541
  Copyright terms: Public domain W3C validator