ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nrex Unicode version

Theorem nrex 2453
Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
Hypothesis
Ref Expression
nrex.1  |-  ( x  e.  A  ->  -.  ps )
Assertion
Ref Expression
nrex  |-  -.  E. x  e.  A  ps

Proof of Theorem nrex
StepHypRef Expression
1 nrex.1 . . 3  |-  ( x  e.  A  ->  -.  ps )
21rgen 2416 . 2  |-  A. x  e.  A  -.  ps
3 ralnex 2358 . 2  |-  ( A. x  e.  A  -.  ps 
<->  -.  E. x  e.  A  ps )
42, 3mpbi 143 1  |-  -.  E. x  e.  A  ps
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 1433   A.wral 2348   E.wrex 2349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-5 1376  ax-gen 1378  ax-ie2 1423
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-ral 2353  df-rex 2354
This theorem is referenced by:  rex0  3265  iun0  3734  frec0g  6006  nominpos  8268  sqrt2irr  10541
  Copyright terms: Public domain W3C validator