| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onun2i | GIF version | ||
| Description: The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994.) (Constructive proof by Jim Kingdon, 25-Jul-2019.) |
| Ref | Expression |
|---|---|
| onun2i.1 | ⊢ 𝐴 ∈ On |
| onun2i.2 | ⊢ 𝐵 ∈ On |
| Ref | Expression |
|---|---|
| onun2i | ⊢ (𝐴 ∪ 𝐵) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onun2i.1 | . 2 ⊢ 𝐴 ∈ On | |
| 2 | onun2i.2 | . 2 ⊢ 𝐵 ∈ On | |
| 3 | onun2 4234 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) | |
| 4 | 1, 2, 3 | mp2an 416 | 1 ⊢ (𝐴 ∪ 𝐵) ∈ On |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 1433 ∪ cun 2971 Oncon0 4118 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-uni 3602 df-tr 3876 df-iord 4121 df-on 4123 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |