| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2cn | GIF version | ||
| Description: A theorem for complex numbers analogous the second Peano postulate peano2 4336. (Contributed by NM, 17-Aug-2005.) |
| Ref | Expression |
|---|---|
| peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 7069 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | addcl 7098 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
| 3 | 1, 2 | mpan2 415 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 1433 (class class class)co 5532 ℂcc 6979 1c1 6982 + caddc 6984 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 106 ax-1cn 7069 ax-addcl 7072 |
| This theorem is referenced by: xp1d2m1eqxm1d2 8283 nneo 8450 zeo 8452 zeo2 8453 zesq 9591 facndiv 9666 faclbnd 9668 faclbnd6 9671 odd2np1 10272 |
| Copyright terms: Public domain | W3C validator |