![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > facndiv | GIF version |
Description: No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.) |
Ref | Expression |
---|---|
facndiv | ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ¬ (((!‘𝑀) + 1) / 𝑁) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 8046 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
2 | recnz 8440 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → ¬ (1 / 𝑁) ∈ ℤ) | |
3 | 1, 2 | sylan 277 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → ¬ (1 / 𝑁) ∈ ℤ) |
4 | 3 | ad2ant2lr 493 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ¬ (1 / 𝑁) ∈ ℤ) |
5 | facdiv 9665 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ) | |
6 | 5 | 3expa 1138 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ≤ 𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ) |
7 | 6 | nnzd 8468 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ≤ 𝑀) → ((!‘𝑀) / 𝑁) ∈ ℤ) |
8 | 7 | adantrl 461 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ((!‘𝑀) / 𝑁) ∈ ℤ) |
9 | zsubcl 8392 | . . . . 5 ⊢ (((((!‘𝑀) + 1) / 𝑁) ∈ ℤ ∧ ((!‘𝑀) / 𝑁) ∈ ℤ) → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ) | |
10 | 9 | ex 113 | . . . 4 ⊢ ((((!‘𝑀) + 1) / 𝑁) ∈ ℤ → (((!‘𝑀) / 𝑁) ∈ ℤ → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ)) |
11 | 8, 10 | syl5com 29 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ((((!‘𝑀) + 1) / 𝑁) ∈ ℤ → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ)) |
12 | faccl 9662 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ) | |
13 | 12 | nncnd 8053 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℂ) |
14 | peano2cn 7243 | . . . . . . . 8 ⊢ ((!‘𝑀) ∈ ℂ → ((!‘𝑀) + 1) ∈ ℂ) | |
15 | 13, 14 | syl 14 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → ((!‘𝑀) + 1) ∈ ℂ) |
16 | 15 | ad2antrr 471 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ((!‘𝑀) + 1) ∈ ℂ) |
17 | 13 | ad2antrr 471 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → (!‘𝑀) ∈ ℂ) |
18 | nncn 8047 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
19 | 18 | ad2antlr 472 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → 𝑁 ∈ ℂ) |
20 | simplr 496 | . . . . . . 7 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → 𝑁 ∈ ℕ) | |
21 | 20 | nnap0d 8084 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → 𝑁 # 0) |
22 | 16, 17, 19, 21 | divsubdirapd 7916 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ((((!‘𝑀) + 1) − (!‘𝑀)) / 𝑁) = ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁))) |
23 | ax-1cn 7069 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
24 | pncan2 7315 | . . . . . . . 8 ⊢ (((!‘𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → (((!‘𝑀) + 1) − (!‘𝑀)) = 1) | |
25 | 13, 23, 24 | sylancl 404 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → (((!‘𝑀) + 1) − (!‘𝑀)) = 1) |
26 | 25 | oveq1d 5547 | . . . . . 6 ⊢ (𝑀 ∈ ℕ0 → ((((!‘𝑀) + 1) − (!‘𝑀)) / 𝑁) = (1 / 𝑁)) |
27 | 26 | ad2antrr 471 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ((((!‘𝑀) + 1) − (!‘𝑀)) / 𝑁) = (1 / 𝑁)) |
28 | 22, 27 | eqtr3d 2115 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) = (1 / 𝑁)) |
29 | 28 | eleq1d 2147 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → (((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ ↔ (1 / 𝑁) ∈ ℤ)) |
30 | 11, 29 | sylibd 147 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ((((!‘𝑀) + 1) / 𝑁) ∈ ℤ → (1 / 𝑁) ∈ ℤ)) |
31 | 4, 30 | mtod 621 | 1 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ¬ (((!‘𝑀) + 1) / 𝑁) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 class class class wbr 3785 ‘cfv 4922 (class class class)co 5532 ℂcc 6979 ℝcr 6980 1c1 6982 + caddc 6984 < clt 7153 ≤ cle 7154 − cmin 7279 / cdiv 7760 ℕcn 8039 ℕ0cn0 8288 ℤcz 8351 !cfa 9652 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 df-iseq 9432 df-fac 9653 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |