![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1p1times | GIF version |
Description: Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
1p1times | ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7069 | . . . 4 ⊢ 1 ∈ ℂ | |
2 | 1 | a1i 9 | . . 3 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) |
3 | id 19 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
4 | 2, 2, 3 | adddird 7144 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = ((1 · 𝐴) + (1 · 𝐴))) |
5 | mulid2 7117 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
6 | 5, 5 | oveq12d 5550 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 · 𝐴) + (1 · 𝐴)) = (𝐴 + 𝐴)) |
7 | 4, 6 | eqtrd 2113 | 1 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1284 ∈ wcel 1433 (class class class)co 5532 ℂcc 6979 1c1 6982 + caddc 6984 · cmul 6986 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-resscn 7068 ax-1cn 7069 ax-icn 7071 ax-addcl 7072 ax-mulcl 7074 ax-mulcom 7077 ax-mulass 7079 ax-distr 7080 ax-1rid 7083 ax-cnre 7087 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 |
This theorem is referenced by: eqneg 7820 2times 8160 |
Copyright terms: Public domain | W3C validator |