ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano5nni GIF version

Theorem peano5nni 8042
Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano5nni ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem peano5nni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 1re 7118 . . . 4 1 ∈ ℝ
2 elin 3155 . . . . 5 (1 ∈ (𝐴 ∩ ℝ) ↔ (1 ∈ 𝐴 ∧ 1 ∈ ℝ))
32biimpri 131 . . . 4 ((1 ∈ 𝐴 ∧ 1 ∈ ℝ) → 1 ∈ (𝐴 ∩ ℝ))
41, 3mpan2 415 . . 3 (1 ∈ 𝐴 → 1 ∈ (𝐴 ∩ ℝ))
5 inss1 3186 . . . . 5 (𝐴 ∩ ℝ) ⊆ 𝐴
6 ssralv 3058 . . . . 5 ((𝐴 ∩ ℝ) ⊆ 𝐴 → (∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ 𝐴))
75, 6ax-mp 7 . . . 4 (∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ 𝐴)
8 inss2 3187 . . . . . . . 8 (𝐴 ∩ ℝ) ⊆ ℝ
98sseli 2995 . . . . . . 7 (𝑥 ∈ (𝐴 ∩ ℝ) → 𝑥 ∈ ℝ)
10 1red 7134 . . . . . . 7 (𝑥 ∈ (𝐴 ∩ ℝ) → 1 ∈ ℝ)
119, 10readdcld 7148 . . . . . 6 (𝑥 ∈ (𝐴 ∩ ℝ) → (𝑥 + 1) ∈ ℝ)
12 elin 3155 . . . . . . 7 ((𝑥 + 1) ∈ (𝐴 ∩ ℝ) ↔ ((𝑥 + 1) ∈ 𝐴 ∧ (𝑥 + 1) ∈ ℝ))
1312simplbi2com 1373 . . . . . 6 ((𝑥 + 1) ∈ ℝ → ((𝑥 + 1) ∈ 𝐴 → (𝑥 + 1) ∈ (𝐴 ∩ ℝ)))
1411, 13syl 14 . . . . 5 (𝑥 ∈ (𝐴 ∩ ℝ) → ((𝑥 + 1) ∈ 𝐴 → (𝑥 + 1) ∈ (𝐴 ∩ ℝ)))
1514ralimia 2424 . . . 4 (∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ))
167, 15syl 14 . . 3 (∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ))
17 reex 7107 . . . . 5 ℝ ∈ V
1817inex2 3913 . . . 4 (𝐴 ∩ ℝ) ∈ V
19 eleq2 2142 . . . . . . 7 (𝑦 = (𝐴 ∩ ℝ) → (1 ∈ 𝑦 ↔ 1 ∈ (𝐴 ∩ ℝ)))
20 eleq2 2142 . . . . . . . 8 (𝑦 = (𝐴 ∩ ℝ) → ((𝑥 + 1) ∈ 𝑦 ↔ (𝑥 + 1) ∈ (𝐴 ∩ ℝ)))
2120raleqbi1dv 2557 . . . . . . 7 (𝑦 = (𝐴 ∩ ℝ) → (∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ)))
2219, 21anbi12d 456 . . . . . 6 (𝑦 = (𝐴 ∩ ℝ) → ((1 ∈ 𝑦 ∧ ∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦) ↔ (1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ))))
2322elabg 2739 . . . . 5 ((𝐴 ∩ ℝ) ∈ V → ((𝐴 ∩ ℝ) ∈ {𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦)} ↔ (1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ))))
24 dfnn2 8041 . . . . . 6 ℕ = {𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦)}
25 intss1 3651 . . . . . 6 ((𝐴 ∩ ℝ) ∈ {𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦)} → {𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦)} ⊆ (𝐴 ∩ ℝ))
2624, 25syl5eqss 3043 . . . . 5 ((𝐴 ∩ ℝ) ∈ {𝑦 ∣ (1 ∈ 𝑦 ∧ ∀𝑥𝑦 (𝑥 + 1) ∈ 𝑦)} → ℕ ⊆ (𝐴 ∩ ℝ))
2723, 26syl6bir 162 . . . 4 ((𝐴 ∩ ℝ) ∈ V → ((1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ)) → ℕ ⊆ (𝐴 ∩ ℝ)))
2818, 27ax-mp 7 . . 3 ((1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑥 ∈ (𝐴 ∩ ℝ)(𝑥 + 1) ∈ (𝐴 ∩ ℝ)) → ℕ ⊆ (𝐴 ∩ ℝ))
294, 16, 28syl2an 283 . 2 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ (𝐴 ∩ ℝ))
3029, 5syl6ss 3011 1 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  {cab 2067  wral 2348  Vcvv 2601  cin 2972  wss 2973   cint 3636  (class class class)co 5532  cr 6980  1c1 6982   + caddc 6984  cn 8039
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-cnex 7067  ax-resscn 7068  ax-1re 7070  ax-addrcl 7073
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-in 2979  df-ss 2986  df-int 3637  df-inn 8040
This theorem is referenced by:  nnssre  8043  nnind  8055
  Copyright terms: Public domain W3C validator