![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inss2 | GIF version |
Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
inss2 | ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3158 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
2 | inss1 3186 | . 2 ⊢ (𝐵 ∩ 𝐴) ⊆ 𝐵 | |
3 | 1, 2 | eqsstr3i 3030 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∩ cin 2972 ⊆ wss 2973 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-in 2979 df-ss 2986 |
This theorem is referenced by: difin0 3317 bnd2 3947 ordin 4140 relin2 4474 relres 4657 ssrnres 4783 cnvcnv 4793 funimaexg 5003 fnresin2 5034 ssimaex 5255 ffvresb 5349 ofrfval 5740 fnofval 5741 ofrval 5742 off 5744 ofres 5745 ofco 5749 offres 5782 tpostpos 5902 smores3 5931 tfrlem5 5953 tfrexlem 5971 erinxp 6203 ltrelpi 6514 peano5nnnn 7058 peano5nni 8042 rexanuz 9874 peano5set 10735 |
Copyright terms: Public domain | W3C validator |