| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano5nni | Unicode version | ||
| Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| peano5nni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 7118 |
. . . 4
| |
| 2 | elin 3155 |
. . . . 5
| |
| 3 | 2 | biimpri 131 |
. . . 4
|
| 4 | 1, 3 | mpan2 415 |
. . 3
|
| 5 | inss1 3186 |
. . . . 5
| |
| 6 | ssralv 3058 |
. . . . 5
| |
| 7 | 5, 6 | ax-mp 7 |
. . . 4
|
| 8 | inss2 3187 |
. . . . . . . 8
| |
| 9 | 8 | sseli 2995 |
. . . . . . 7
|
| 10 | 1red 7134 |
. . . . . . 7
| |
| 11 | 9, 10 | readdcld 7148 |
. . . . . 6
|
| 12 | elin 3155 |
. . . . . . 7
| |
| 13 | 12 | simplbi2com 1373 |
. . . . . 6
|
| 14 | 11, 13 | syl 14 |
. . . . 5
|
| 15 | 14 | ralimia 2424 |
. . . 4
|
| 16 | 7, 15 | syl 14 |
. . 3
|
| 17 | reex 7107 |
. . . . 5
| |
| 18 | 17 | inex2 3913 |
. . . 4
|
| 19 | eleq2 2142 |
. . . . . . 7
| |
| 20 | eleq2 2142 |
. . . . . . . 8
| |
| 21 | 20 | raleqbi1dv 2557 |
. . . . . . 7
|
| 22 | 19, 21 | anbi12d 456 |
. . . . . 6
|
| 23 | 22 | elabg 2739 |
. . . . 5
|
| 24 | dfnn2 8041 |
. . . . . 6
| |
| 25 | intss1 3651 |
. . . . . 6
| |
| 26 | 24, 25 | syl5eqss 3043 |
. . . . 5
|
| 27 | 23, 26 | syl6bir 162 |
. . . 4
|
| 28 | 18, 27 | ax-mp 7 |
. . 3
|
| 29 | 4, 16, 28 | syl2an 283 |
. 2
|
| 30 | 29, 5 | syl6ss 3011 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-cnex 7067 ax-resscn 7068 ax-1re 7070 ax-addrcl 7073 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-in 2979 df-ss 2986 df-int 3637 df-inn 8040 |
| This theorem is referenced by: nnssre 8043 nnind 8055 |
| Copyright terms: Public domain | W3C validator |