| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.65da | GIF version | ||
| Description: Deduction rule for proof by contradiction. (Contributed by NM, 12-Jun-2014.) |
| Ref | Expression |
|---|---|
| pm2.65da.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| pm2.65da.2 | ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜒) |
| Ref | Expression |
|---|---|
| pm2.65da | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.65da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 113 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | pm2.65da.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜒) | |
| 4 | 3 | ex 113 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
| 5 | 2, 4 | pm2.65d 618 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 106 ax-in1 576 ax-in2 577 |
| This theorem is referenced by: condandc 808 nelrdva 2797 frirrg 4105 unsnfidcex 6385 unsnfidcel 6386 prodgt0 7930 ixxdisj 8926 icodisj 9014 ltabs 9973 divalglemnqt 10320 zsupcllemstep 10341 infssuzex 10345 sqnprm 10517 |
| Copyright terms: Public domain | W3C validator |