ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unsnfidcex GIF version

Theorem unsnfidcex 6385
Description: The 𝐵𝑉 condition in unsnfi 6384. This is intended to show that unsnfi 6384 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
Assertion
Ref Expression
unsnfidcex ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵 ∈ V)

Proof of Theorem unsnfidcex
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6264 . . . . 5 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 118 . . . 4 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
323ad2ant1 959 . . 3 ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → ∃𝑛 ∈ ω 𝐴𝑛)
4 isfi 6264 . . . . . . 7 ((𝐴 ∪ {𝐵}) ∈ Fin ↔ ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
54biimpi 118 . . . . . 6 ((𝐴 ∪ {𝐵}) ∈ Fin → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
653ad2ant3 961 . . . . 5 ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
76adantr 270 . . . 4 (((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω (𝐴 ∪ {𝐵}) ≈ 𝑚)
8 simprr 498 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝑛)
98ad3antrrr 475 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → 𝐴𝑛)
10 simplr 496 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → 𝑚 = 𝑛)
119, 10breqtrrd 3811 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → 𝐴𝑚)
12 simprr 498 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → (𝐴 ∪ {𝐵}) ≈ 𝑚)
1312ad2antrr 471 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → (𝐴 ∪ {𝐵}) ≈ 𝑚)
1413ensymd 6286 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → 𝑚 ≈ (𝐴 ∪ {𝐵}))
15 entr 6287 . . . . . . . 8 ((𝐴𝑚𝑚 ≈ (𝐴 ∪ {𝐵})) → 𝐴 ≈ (𝐴 ∪ {𝐵}))
1611, 14, 15syl2anc 403 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → 𝐴 ≈ (𝐴 ∪ {𝐵}))
17 simp1 938 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → 𝐴 ∈ Fin)
1817ad4antr 477 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → 𝐴 ∈ Fin)
19 simpr 108 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → 𝐵 ∈ V)
20 simp2 939 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → ¬ 𝐵𝐴)
2120ad4antr 477 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → ¬ 𝐵𝐴)
2219, 21eldifd 2983 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → 𝐵 ∈ (V ∖ 𝐴))
23 php5fin 6366 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵}))
2418, 22, 23syl2anc 403 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) ∧ 𝐵 ∈ V) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵}))
2516, 24pm2.65da 619 . . . . . 6 (((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) → ¬ 𝐵 ∈ V)
2625orcd 684 . . . . 5 (((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ 𝑚 = 𝑛) → (¬ 𝐵 ∈ V ∨ ¬ ¬ 𝐵 ∈ V))
278ad3antrrr 475 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → 𝐴𝑛)
2827ensymd 6286 . . . . . . . . . 10 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → 𝑛𝐴)
29 snprc 3457 . . . . . . . . . . . . . . 15 𝐵 ∈ V ↔ {𝐵} = ∅)
3029biimpi 118 . . . . . . . . . . . . . 14 𝐵 ∈ V → {𝐵} = ∅)
3130uneq2d 3126 . . . . . . . . . . . . 13 𝐵 ∈ V → (𝐴 ∪ {𝐵}) = (𝐴 ∪ ∅))
32 un0 3278 . . . . . . . . . . . . 13 (𝐴 ∪ ∅) = 𝐴
3331, 32syl6eq 2129 . . . . . . . . . . . 12 𝐵 ∈ V → (𝐴 ∪ {𝐵}) = 𝐴)
3433adantl 271 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → (𝐴 ∪ {𝐵}) = 𝐴)
3512ad2antrr 471 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → (𝐴 ∪ {𝐵}) ≈ 𝑚)
3634, 35eqbrtrrd 3807 . . . . . . . . . 10 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → 𝐴𝑚)
37 entr 6287 . . . . . . . . . 10 ((𝑛𝐴𝐴𝑚) → 𝑛𝑚)
3828, 36, 37syl2anc 403 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → 𝑛𝑚)
39 simplrl 501 . . . . . . . . . . 11 ((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → 𝑛 ∈ ω)
4039ad2antrr 471 . . . . . . . . . 10 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → 𝑛 ∈ ω)
41 simprl 497 . . . . . . . . . . 11 ((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → 𝑚 ∈ ω)
4241ad2antrr 471 . . . . . . . . . 10 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → 𝑚 ∈ ω)
43 nneneq 6343 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛𝑚𝑛 = 𝑚))
4440, 42, 43syl2anc 403 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → (𝑛𝑚𝑛 = 𝑚))
4538, 44mpbid 145 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → 𝑛 = 𝑚)
4645eqcomd 2086 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → 𝑚 = 𝑛)
47 simplr 496 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) ∧ ¬ 𝐵 ∈ V) → ¬ 𝑚 = 𝑛)
4846, 47pm2.65da 619 . . . . . 6 (((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) → ¬ ¬ 𝐵 ∈ V)
4948olcd 685 . . . . 5 (((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) ∧ ¬ 𝑚 = 𝑛) → (¬ 𝐵 ∈ V ∨ ¬ ¬ 𝐵 ∈ V))
50 nndceq 6100 . . . . . . 7 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → DECID 𝑚 = 𝑛)
5141, 39, 50syl2anc 403 . . . . . 6 ((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → DECID 𝑚 = 𝑛)
52 exmiddc 777 . . . . . 6 (DECID 𝑚 = 𝑛 → (𝑚 = 𝑛 ∨ ¬ 𝑚 = 𝑛))
5351, 52syl 14 . . . . 5 ((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → (𝑚 = 𝑛 ∨ ¬ 𝑚 = 𝑛))
5426, 49, 53mpjaodan 744 . . . 4 ((((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ (𝐴 ∪ {𝐵}) ≈ 𝑚)) → (¬ 𝐵 ∈ V ∨ ¬ ¬ 𝐵 ∈ V))
557, 54rexlimddv 2481 . . 3 (((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (¬ 𝐵 ∈ V ∨ ¬ ¬ 𝐵 ∈ V))
563, 55rexlimddv 2481 . 2 ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → (¬ 𝐵 ∈ V ∨ ¬ ¬ 𝐵 ∈ V))
57 df-dc 776 . 2 (DECID ¬ 𝐵 ∈ V ↔ (¬ 𝐵 ∈ V ∨ ¬ ¬ 𝐵 ∈ V))
5856, 57sylibr 132 1 ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵 ∈ V)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  DECID wdc 775  w3a 919   = wceq 1284  wcel 1433  wrex 2349  Vcvv 2601  cdif 2970  cun 2971  c0 3251  {csn 3398   class class class wbr 3785  ωcom 4331  cen 6242  Fincfn 6244
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-1o 6024  df-er 6129  df-en 6245  df-fin 6247
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator