| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nelrdva | GIF version | ||
| Description: Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017.) |
| Ref | Expression |
|---|---|
| nelrdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| nelrdva | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2082 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 = 𝐵) | |
| 2 | eleq1 2141 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 3 | 2 | anbi2d 451 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝐵 ∈ 𝐴))) |
| 4 | neeq1 2258 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑥 ≠ 𝐵 ↔ 𝐵 ≠ 𝐵)) | |
| 5 | 3, 4 | imbi12d 232 | . . . . 5 ⊢ (𝑥 = 𝐵 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝐵) ↔ ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≠ 𝐵))) |
| 6 | nelrdva.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝐵) | |
| 7 | 5, 6 | vtoclg 2658 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≠ 𝐵)) |
| 8 | 7 | anabsi7 545 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≠ 𝐵) |
| 9 | 8 | neneqd 2266 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 = 𝐵) |
| 10 | 1, 9 | pm2.65da 619 | 1 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 ≠ wne 2245 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-v 2603 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |