![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sqnprm | GIF version |
Description: A square is never prime. (Contributed by Mario Carneiro, 20-Jun-2015.) |
Ref | Expression |
---|---|
sqnprm | ⊢ (𝐴 ∈ ℤ → ¬ (𝐴↑2) ∈ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 8355 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
2 | 1 | adantr 270 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 𝐴 ∈ ℝ) |
3 | absresq 9964 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴)↑2) = (𝐴↑2)) |
5 | 2 | recnd 7147 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 𝐴 ∈ ℂ) |
6 | 5 | abscld 10067 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℝ) |
7 | 6 | recnd 7147 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℂ) |
8 | 7 | sqvald 9602 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴)↑2) = ((abs‘𝐴) · (abs‘𝐴))) |
9 | 4, 8 | eqtr3d 2115 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) = ((abs‘𝐴) · (abs‘𝐴))) |
10 | simpr 108 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) ∈ ℙ) | |
11 | 9, 10 | eqeltrrd 2156 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ) |
12 | nn0abscl 9971 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0) | |
13 | 12 | adantr 270 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℕ0) |
14 | 13 | nn0zd 8467 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℤ) |
15 | sq1 9569 | . . . . . 6 ⊢ (1↑2) = 1 | |
16 | prmuz2 10512 | . . . . . . . . 9 ⊢ ((𝐴↑2) ∈ ℙ → (𝐴↑2) ∈ (ℤ≥‘2)) | |
17 | 16 | adantl 271 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) ∈ (ℤ≥‘2)) |
18 | eluz2b1 8688 | . . . . . . . . 9 ⊢ ((𝐴↑2) ∈ (ℤ≥‘2) ↔ ((𝐴↑2) ∈ ℤ ∧ 1 < (𝐴↑2))) | |
19 | 18 | simprbi 269 | . . . . . . . 8 ⊢ ((𝐴↑2) ∈ (ℤ≥‘2) → 1 < (𝐴↑2)) |
20 | 17, 19 | syl 14 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < (𝐴↑2)) |
21 | 20, 4 | breqtrrd 3811 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < ((abs‘𝐴)↑2)) |
22 | 15, 21 | syl5eqbr 3818 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (1↑2) < ((abs‘𝐴)↑2)) |
23 | 5 | absge0d 10070 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 0 ≤ (abs‘𝐴)) |
24 | 1re 7118 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
25 | 0le1 7585 | . . . . . . 7 ⊢ 0 ≤ 1 | |
26 | lt2sq 9549 | . . . . . . 7 ⊢ (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2))) | |
27 | 24, 25, 26 | mpanl12 426 | . . . . . 6 ⊢ (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2))) |
28 | 6, 23, 27 | syl2anc 403 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2))) |
29 | 22, 28 | mpbird 165 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < (abs‘𝐴)) |
30 | eluz2b1 8688 | . . . 4 ⊢ ((abs‘𝐴) ∈ (ℤ≥‘2) ↔ ((abs‘𝐴) ∈ ℤ ∧ 1 < (abs‘𝐴))) | |
31 | 14, 29, 30 | sylanbrc 408 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ (ℤ≥‘2)) |
32 | nprm 10505 | . . 3 ⊢ (((abs‘𝐴) ∈ (ℤ≥‘2) ∧ (abs‘𝐴) ∈ (ℤ≥‘2)) → ¬ ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ) | |
33 | 31, 31, 32 | syl2anc 403 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ¬ ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ) |
34 | 11, 33 | pm2.65da 619 | 1 ⊢ (𝐴 ∈ ℤ → ¬ (𝐴↑2) ∈ ℙ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 class class class wbr 3785 ‘cfv 4922 (class class class)co 5532 ℝcr 6980 0cc0 6981 1c1 6982 · cmul 6986 < clt 7153 ≤ cle 7154 2c2 8089 ℕ0cn0 8288 ℤcz 8351 ℤ≥cuz 8619 ↑cexp 9475 abscabs 9883 ℙcprime 10489 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 ax-caucvg 7096 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-1o 6024 df-2o 6025 df-er 6129 df-en 6245 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-n0 8289 df-z 8352 df-uz 8620 df-q 8705 df-rp 8735 df-iseq 9432 df-iexp 9476 df-cj 9729 df-re 9730 df-im 9731 df-rsqrt 9884 df-abs 9885 df-dvds 10196 df-prm 10490 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |