![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orcom | GIF version |
Description: Commutative law for disjunction. Theorem *4.31 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 15-Nov-2012.) |
Ref | Expression |
---|---|
orcom | ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.4 678 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) | |
2 | pm1.4 678 | . 2 ⊢ ((𝜓 ∨ 𝜑) → (𝜑 ∨ 𝜓)) | |
3 | 1, 2 | impbii 124 | 1 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ∨ wo 661 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: orcomd 680 orbi1i 712 orass 716 or32 719 or42 721 orbi1d 737 pm5.61 740 oranabs 761 ordir 763 pm2.1dc 778 notnotrdc 784 pm5.17dc 843 testbitestn 856 pm5.7dc 895 dn1dc 901 pm5.75 903 3orrot 925 3orcomb 928 excxor 1309 xorcom 1319 19.33b2 1560 nf4dc 1600 nf4r 1601 19.31r 1611 dveeq2 1736 sbequilem 1759 dvelimALT 1927 dvelimfv 1928 dvelimor 1935 eueq2dc 2765 uncom 3116 reuun2 3247 prel12 3563 ordtriexmid 4265 ordtri2orexmid 4266 ontr2exmid 4268 onsucsssucexmid 4270 ordsoexmid 4305 ordtri2or2exmid 4314 cnvsom 4881 fununi 4987 frec0g 6006 frecsuclem3 6013 swoer 6157 enq0tr 6624 letr 7194 reapmul1 7695 reapneg 7697 reapcotr 7698 remulext1 7699 apsym 7706 mulext1 7712 elznn0nn 8365 elznn0 8366 zapne 8422 nneoor 8449 nn01to3 8702 ltxr 8849 xrletr 8878 maxclpr 10108 odd2np1lem 10271 lcmcom 10446 dvdsprime 10504 coprm 10523 |
Copyright terms: Public domain | W3C validator |