| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl6rbb | GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| syl6rbb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| syl6rbb.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| syl6rbb | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6rbb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | syl6rbb.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | syl6bb 194 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3 | bicomd 139 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: syl6rbbr 197 bibif 646 pm5.61 740 oranabs 761 pm5.7dc 895 nbbndc 1325 resopab2 4675 xpcom 4884 f1od2 5876 ac6sfi 6379 elznn0 8366 rexuz3 9876 |
| Copyright terms: Public domain | W3C validator |