![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabnc | GIF version |
Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.) |
Ref | Expression |
---|---|
rabnc | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inrab 3236 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} | |
2 | rabeq0 3274 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜑)) | |
3 | pm3.24 659 | . . . 4 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) | |
4 | 3 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ¬ (𝜑 ∧ ¬ 𝜑)) |
5 | 2, 4 | mprgbir 2421 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅ |
6 | 1, 5 | eqtri 2101 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 102 = wceq 1284 ∈ wcel 1433 {crab 2352 ∩ cin 2972 ∅c0 3251 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rab 2357 df-v 2603 df-dif 2975 df-in 2979 df-nul 3252 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |