![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabxmdc | GIF version |
Description: Law of excluded middle given decidability, in terms of restricted class abstractions. (Contributed by Jim Kingdon, 2-Aug-2018.) |
Ref | Expression |
---|---|
rabxmdc | ⊢ (∀𝑥DECID 𝜑 → 𝐴 = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmiddc 777 | . . . . . 6 ⊢ (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑)) | |
2 | 1 | a1d 22 | . . . . 5 ⊢ (DECID 𝜑 → (𝑥 ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑))) |
3 | 2 | alimi 1384 | . . . 4 ⊢ (∀𝑥DECID 𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑))) |
4 | df-ral 2353 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ ¬ 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑))) | |
5 | 3, 4 | sylibr 132 | . . 3 ⊢ (∀𝑥DECID 𝜑 → ∀𝑥 ∈ 𝐴 (𝜑 ∨ ¬ 𝜑)) |
6 | rabid2 2530 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∨ ¬ 𝜑)) | |
7 | 5, 6 | sylibr 132 | . 2 ⊢ (∀𝑥DECID 𝜑 → 𝐴 = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)}) |
8 | unrab 3235 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} | |
9 | 7, 8 | syl6eqr 2131 | 1 ⊢ (∀𝑥DECID 𝜑 → 𝐴 = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑})) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 661 DECID wdc 775 ∀wal 1282 = wceq 1284 ∈ wcel 1433 ∀wral 2348 {crab 2352 ∪ cun 2971 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rab 2357 df-v 2603 df-un 2977 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |