ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabxmdc GIF version

Theorem rabxmdc 3276
Description: Law of excluded middle given decidability, in terms of restricted class abstractions. (Contributed by Jim Kingdon, 2-Aug-2018.)
Assertion
Ref Expression
rabxmdc (∀𝑥DECID 𝜑𝐴 = ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑}))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabxmdc
StepHypRef Expression
1 exmiddc 777 . . . . . 6 (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑))
21a1d 22 . . . . 5 (DECID 𝜑 → (𝑥𝐴 → (𝜑 ∨ ¬ 𝜑)))
32alimi 1384 . . . 4 (∀𝑥DECID 𝜑 → ∀𝑥(𝑥𝐴 → (𝜑 ∨ ¬ 𝜑)))
4 df-ral 2353 . . . 4 (∀𝑥𝐴 (𝜑 ∨ ¬ 𝜑) ↔ ∀𝑥(𝑥𝐴 → (𝜑 ∨ ¬ 𝜑)))
53, 4sylibr 132 . . 3 (∀𝑥DECID 𝜑 → ∀𝑥𝐴 (𝜑 ∨ ¬ 𝜑))
6 rabid2 2530 . . 3 (𝐴 = {𝑥𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} ↔ ∀𝑥𝐴 (𝜑 ∨ ¬ 𝜑))
75, 6sylibr 132 . 2 (∀𝑥DECID 𝜑𝐴 = {𝑥𝐴 ∣ (𝜑 ∨ ¬ 𝜑)})
8 unrab 3235 . 2 ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑}) = {𝑥𝐴 ∣ (𝜑 ∨ ¬ 𝜑)}
97, 8syl6eqr 2131 1 (∀𝑥DECID 𝜑𝐴 = ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 661  DECID wdc 775  wal 1282   = wceq 1284  wcel 1433  wral 2348  {crab 2352  cun 2971
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-dc 776  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rab 2357  df-v 2603  df-un 2977
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator