ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeq0 GIF version

Theorem rabeq0 3274
Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.)
Assertion
Ref Expression
rabeq0 ({𝑥𝐴𝜑} = ∅ ↔ ∀𝑥𝐴 ¬ 𝜑)

Proof of Theorem rabeq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 imnan 656 . . 3 ((𝑥𝐴 → ¬ 𝜑) ↔ ¬ (𝑥𝐴𝜑))
21albii 1399 . 2 (∀𝑥(𝑥𝐴 → ¬ 𝜑) ↔ ∀𝑥 ¬ (𝑥𝐴𝜑))
3 df-ral 2353 . 2 (∀𝑥𝐴 ¬ 𝜑 ↔ ∀𝑥(𝑥𝐴 → ¬ 𝜑))
4 sbn 1867 . . . 4 ([𝑦 / 𝑥] ¬ (𝑥𝐴𝜑) ↔ ¬ [𝑦 / 𝑥](𝑥𝐴𝜑))
54albii 1399 . . 3 (∀𝑦[𝑦 / 𝑥] ¬ (𝑥𝐴𝜑) ↔ ∀𝑦 ¬ [𝑦 / 𝑥](𝑥𝐴𝜑))
6 nfv 1461 . . . 4 𝑦 ¬ (𝑥𝐴𝜑)
76sb8 1777 . . 3 (∀𝑥 ¬ (𝑥𝐴𝜑) ↔ ∀𝑦[𝑦 / 𝑥] ¬ (𝑥𝐴𝜑))
8 eq0 3266 . . . 4 ({𝑥𝐴𝜑} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝜑})
9 df-rab 2357 . . . . . . . 8 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
109eleq2i 2145 . . . . . . 7 (𝑦 ∈ {𝑥𝐴𝜑} ↔ 𝑦 ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
11 df-clab 2068 . . . . . . 7 (𝑦 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ [𝑦 / 𝑥](𝑥𝐴𝜑))
1210, 11bitri 182 . . . . . 6 (𝑦 ∈ {𝑥𝐴𝜑} ↔ [𝑦 / 𝑥](𝑥𝐴𝜑))
1312notbii 626 . . . . 5 𝑦 ∈ {𝑥𝐴𝜑} ↔ ¬ [𝑦 / 𝑥](𝑥𝐴𝜑))
1413albii 1399 . . . 4 (∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝜑} ↔ ∀𝑦 ¬ [𝑦 / 𝑥](𝑥𝐴𝜑))
158, 14bitri 182 . . 3 ({𝑥𝐴𝜑} = ∅ ↔ ∀𝑦 ¬ [𝑦 / 𝑥](𝑥𝐴𝜑))
165, 7, 153bitr4ri 211 . 2 ({𝑥𝐴𝜑} = ∅ ↔ ∀𝑥 ¬ (𝑥𝐴𝜑))
172, 3, 163bitr4ri 211 1 ({𝑥𝐴𝜑} = ∅ ↔ ∀𝑥𝐴 ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wal 1282   = wceq 1284  wcel 1433  [wsb 1685  {cab 2067  wral 2348  {crab 2352  c0 3251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rab 2357  df-v 2603  df-dif 2975  df-nul 3252
This theorem is referenced by:  rabnc  3277  rabrsndc  3460  ssfilem  6360  diffitest  6371  iooidg  8932  icc0r  8949  fznlem  9060  ioo0  9268  ico0  9270  ioc0  9271
  Copyright terms: Public domain W3C validator