ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralbi GIF version

Theorem ralbi 2489
Description: Distribute a restricted universal quantifier over a biconditional. Theorem 19.15 of [Margaris] p. 90 with restricted quantification. (Contributed by NM, 6-Oct-2003.)
Assertion
Ref Expression
ralbi (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜓))

Proof of Theorem ralbi
StepHypRef Expression
1 nfra1 2397 . 2 𝑥𝑥𝐴 (𝜑𝜓)
2 rsp 2411 . . 3 (∀𝑥𝐴 (𝜑𝜓) → (𝑥𝐴 → (𝜑𝜓)))
32imp 122 . 2 ((∀𝑥𝐴 (𝜑𝜓) ∧ 𝑥𝐴) → (𝜑𝜓))
41, 3ralbida 2362 1 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wcel 1433  wral 2348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-4 1440  ax-ial 1467
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-ral 2353
This theorem is referenced by:  uniiunlem  3082  iineq2  3695  ralrnmpt  5330  f1mpt  5431  mpt22eqb  5630  ralrnmpt2  5635  cau3lem  10000
  Copyright terms: Public domain W3C validator