ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1mpt GIF version

Theorem f1mpt 5431
Description: Express injection for a mapping operation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
f1mpt.1 𝐹 = (𝑥𝐴𝐶)
f1mpt.2 (𝑥 = 𝑦𝐶 = 𝐷)
Assertion
Ref Expression
f1mpt (𝐹:𝐴1-1𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝑦,𝐹
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝐹(𝑥)

Proof of Theorem f1mpt
StepHypRef Expression
1 f1mpt.1 . . . 4 𝐹 = (𝑥𝐴𝐶)
2 nfmpt1 3871 . . . 4 𝑥(𝑥𝐴𝐶)
31, 2nfcxfr 2216 . . 3 𝑥𝐹
4 nfcv 2219 . . 3 𝑦𝐹
53, 4dff13f 5430 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
61fmpt 5340 . . 3 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
76anbi1i 445 . 2 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
8 f1mpt.2 . . . . . . 7 (𝑥 = 𝑦𝐶 = 𝐷)
98eleq1d 2147 . . . . . 6 (𝑥 = 𝑦 → (𝐶𝐵𝐷𝐵))
109cbvralv 2577 . . . . 5 (∀𝑥𝐴 𝐶𝐵 ↔ ∀𝑦𝐴 𝐷𝐵)
11 raaanv 3348 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝐶𝐵𝐷𝐵) ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐴 𝐷𝐵))
121fvmpt2 5275 . . . . . . . . . . . . . 14 ((𝑥𝐴𝐶𝐵) → (𝐹𝑥) = 𝐶)
138, 1fvmptg 5269 . . . . . . . . . . . . . 14 ((𝑦𝐴𝐷𝐵) → (𝐹𝑦) = 𝐷)
1412, 13eqeqan12d 2096 . . . . . . . . . . . . 13 (((𝑥𝐴𝐶𝐵) ∧ (𝑦𝐴𝐷𝐵)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝐶 = 𝐷))
1514an4s 552 . . . . . . . . . . . 12 (((𝑥𝐴𝑦𝐴) ∧ (𝐶𝐵𝐷𝐵)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝐶 = 𝐷))
1615imbi1d 229 . . . . . . . . . . 11 (((𝑥𝐴𝑦𝐴) ∧ (𝐶𝐵𝐷𝐵)) → (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷𝑥 = 𝑦)))
1716ex 113 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) → ((𝐶𝐵𝐷𝐵) → (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷𝑥 = 𝑦))))
1817ralimdva 2429 . . . . . . . . 9 (𝑥𝐴 → (∀𝑦𝐴 (𝐶𝐵𝐷𝐵) → ∀𝑦𝐴 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷𝑥 = 𝑦))))
19 ralbi 2489 . . . . . . . . 9 (∀𝑦𝐴 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷𝑥 = 𝑦)) → (∀𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
2018, 19syl6 33 . . . . . . . 8 (𝑥𝐴 → (∀𝑦𝐴 (𝐶𝐵𝐷𝐵) → (∀𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))))
2120ralimia 2424 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝐶𝐵𝐷𝐵) → ∀𝑥𝐴 (∀𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
22 ralbi 2489 . . . . . . 7 (∀𝑥𝐴 (∀𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)) → (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
2321, 22syl 14 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝐶𝐵𝐷𝐵) → (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
2411, 23sylbir 133 . . . . 5 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐴 𝐷𝐵) → (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
2510, 24sylan2b 281 . . . 4 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴 𝐶𝐵) → (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
2625anidms 389 . . 3 (∀𝑥𝐴 𝐶𝐵 → (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
2726pm5.32i 441 . 2 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
285, 7, 273bitr2i 206 1 (𝐹:𝐴1-1𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wral 2348  cmpt 3839  wf 4918  1-1wf1 4919  cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fv 4930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator