![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralbida | GIF version |
Description: Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 6-Oct-2003.) |
Ref | Expression |
---|---|
ralbida.1 | ⊢ Ⅎ𝑥𝜑 |
ralbida.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralbida | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbida.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbida.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | pm5.74da 431 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐴 → 𝜒))) |
4 | 1, 3 | albid 1546 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜒))) |
5 | df-ral 2353 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
6 | df-ral 2353 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜒)) | |
7 | 4, 5, 6 | 3bitr4g 221 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1282 Ⅎwnf 1389 ∈ wcel 1433 ∀wral 2348 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-ral 2353 |
This theorem is referenced by: ralbidva 2364 ralbid 2366 2ralbida 2387 ralbi 2489 caucvgsrlemgt1 6971 |
Copyright terms: Public domain | W3C validator |