![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralbidva | GIF version |
Description: Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
ralbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1461 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | ralbida 2362 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∈ wcel 1433 ∀wral 2348 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-17 1459 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-ral 2353 |
This theorem is referenced by: raleqbidva 2563 poinxp 4427 funimass4 5245 funimass3 5304 funconstss 5306 cocan1 5447 cocan2 5448 isocnv2 5472 isores2 5473 isoini2 5478 ofrfval 5740 ofrfval2 5747 dfsmo2 5925 smores 5930 smores2 5932 ac6sfi 6379 supisolem 6421 ordiso2 6446 caucvgsrlemcau 6969 suprleubex 8032 dfinfre 8034 zextlt 8439 prime 8446 fzshftral 9125 clim 10120 clim2 10122 clim2c 10123 clim0c 10125 climabs0 10146 climrecvg1n 10185 dfgcd2 10403 sqrt2irr 10541 |
Copyright terms: Public domain | W3C validator |