![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > renepnf | GIF version |
Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
renepnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 7160 | . . . 4 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 2341 | . . 3 ⊢ ¬ +∞ ∈ ℝ |
3 | eleq1 2141 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ +∞ ∈ ℝ)) | |
4 | 2, 3 | mtbiri 632 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
5 | 4 | necon2ai 2299 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1284 ∈ wcel 1433 ≠ wne 2245 ℝcr 6980 +∞cpnf 7150 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-un 4188 ax-cnex 7067 ax-resscn 7068 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-rex 2354 df-rab 2357 df-v 2603 df-in 2979 df-ss 2986 df-pw 3384 df-uni 3602 df-pnf 7155 |
This theorem is referenced by: renepnfd 7169 renfdisj 7172 ltxrlt 7178 xrnepnf 8854 xrlttri3 8872 nltpnft 8884 xrrebnd 8886 rexneg 8897 |
Copyright terms: Public domain | W3C validator |