| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nltpnft | GIF version | ||
| Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.) |
| Ref | Expression |
|---|---|
| nltpnft | ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 8850 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 2 | renepnf 7166 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
| 3 | 2 | neneqd 2266 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 = +∞) |
| 4 | ltpnf 8856 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
| 5 | notnot 591 | . . . . 5 ⊢ (𝐴 < +∞ → ¬ ¬ 𝐴 < +∞) | |
| 6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ ¬ 𝐴 < +∞) |
| 7 | 3, 6 | 2falsed 650 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
| 8 | id 19 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
| 9 | pnfxr 8846 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
| 10 | xrltnr 8855 | . . . . . 6 ⊢ (+∞ ∈ ℝ* → ¬ +∞ < +∞) | |
| 11 | 9, 10 | ax-mp 7 | . . . . 5 ⊢ ¬ +∞ < +∞ |
| 12 | breq1 3788 | . . . . 5 ⊢ (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞)) | |
| 13 | 11, 12 | mtbiri 632 | . . . 4 ⊢ (𝐴 = +∞ → ¬ 𝐴 < +∞) |
| 14 | 8, 13 | 2thd 173 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
| 15 | mnfnepnf 8852 | . . . . . 6 ⊢ -∞ ≠ +∞ | |
| 16 | 15 | neii 2247 | . . . . 5 ⊢ ¬ -∞ = +∞ |
| 17 | eqeq1 2087 | . . . . 5 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞)) | |
| 18 | 16, 17 | mtbiri 632 | . . . 4 ⊢ (𝐴 = -∞ → ¬ 𝐴 = +∞) |
| 19 | mnfltpnf 8860 | . . . . . . 7 ⊢ -∞ < +∞ | |
| 20 | breq1 3788 | . . . . . . 7 ⊢ (𝐴 = -∞ → (𝐴 < +∞ ↔ -∞ < +∞)) | |
| 21 | 19, 20 | mpbiri 166 | . . . . . 6 ⊢ (𝐴 = -∞ → 𝐴 < +∞) |
| 22 | 21 | necon3bi 2295 | . . . . 5 ⊢ (¬ 𝐴 < +∞ → 𝐴 ≠ -∞) |
| 23 | 22 | necon2bi 2300 | . . . 4 ⊢ (𝐴 = -∞ → ¬ ¬ 𝐴 < +∞) |
| 24 | 18, 23 | 2falsed 650 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
| 25 | 7, 14, 24 | 3jaoi 1234 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
| 26 | 1, 25 | sylbi 119 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 103 ∨ w3o 918 = wceq 1284 ∈ wcel 1433 class class class wbr 3785 ℝcr 6980 +∞cpnf 7150 -∞cmnf 7151 ℝ*cxr 7152 < clt 7153 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-pre-ltirr 7088 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |