| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimd2 | GIF version | ||
| Description: Version of rexlimd 2474 with deduction version of second hypothesis. (Contributed by NM, 21-Jul-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) |
| Ref | Expression |
|---|---|
| rexlimd2.1 | ⊢ Ⅎ𝑥𝜑 |
| rexlimd2.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| rexlimd2.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| rexlimd2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimd2.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rexlimd2.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | ralrimi 2432 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| 4 | rexlimd2.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 5 | r19.23t 2467 | . . 3 ⊢ (Ⅎ𝑥𝜒 → (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜓 → 𝜒))) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜓 → 𝜒))) |
| 7 | 3, 6 | mpbid 145 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 Ⅎwnf 1389 ∈ wcel 1433 ∀wral 2348 ∃wrex 2349 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-ral 2353 df-rex 2354 |
| This theorem is referenced by: sbcrext 2891 |
| Copyright terms: Public domain | W3C validator |