ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcrext GIF version

Theorem sbcrext 2891
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbcrext (𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem sbcrext
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcex 2823 . . 3 ([𝐴 / 𝑥]𝑦𝐵 𝜑𝐴 ∈ V)
21a1i 9 . 2 (𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑𝐴 ∈ V))
3 nfnfc1 2222 . . 3 𝑦𝑦𝐴
4 id 19 . . . 4 (𝑦𝐴𝑦𝐴)
5 nfcvd 2220 . . . 4 (𝑦𝐴𝑦V)
64, 5nfeld 2234 . . 3 (𝑦𝐴 → Ⅎ𝑦 𝐴 ∈ V)
7 sbcex 2823 . . . 4 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
872a1i 27 . . 3 (𝑦𝐴 → (𝑦𝐵 → ([𝐴 / 𝑥]𝜑𝐴 ∈ V)))
93, 6, 8rexlimd2 2475 . 2 (𝑦𝐴 → (∃𝑦𝐵 [𝐴 / 𝑥]𝜑𝐴 ∈ V))
10 sbcco 2836 . . . 4 ([𝐴 / 𝑧][𝑧 / 𝑥]𝑦𝐵 𝜑[𝐴 / 𝑥]𝑦𝐵 𝜑)
11 simpl 107 . . . . 5 ((𝐴 ∈ V ∧ 𝑦𝐴) → 𝐴 ∈ V)
12 sbsbc 2819 . . . . . . 7 ([𝑧 / 𝑥]∃𝑦𝐵 𝜑[𝑧 / 𝑥]𝑦𝐵 𝜑)
13 nfcv 2219 . . . . . . . . 9 𝑥𝐵
14 nfs1v 1856 . . . . . . . . 9 𝑥[𝑧 / 𝑥]𝜑
1513, 14nfrexxy 2403 . . . . . . . 8 𝑥𝑦𝐵 [𝑧 / 𝑥]𝜑
16 sbequ12 1694 . . . . . . . . 9 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
1716rexbidv 2369 . . . . . . . 8 (𝑥 = 𝑧 → (∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑))
1815, 17sbie 1714 . . . . . . 7 ([𝑧 / 𝑥]∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑)
1912, 18bitr3i 184 . . . . . 6 ([𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑)
20 nfcvd 2220 . . . . . . . . . 10 (𝑦𝐴𝑦𝑧)
2120, 4nfeqd 2233 . . . . . . . . 9 (𝑦𝐴 → Ⅎ𝑦 𝑧 = 𝐴)
223, 21nfan1 1496 . . . . . . . 8 𝑦(𝑦𝐴𝑧 = 𝐴)
23 dfsbcq2 2818 . . . . . . . . 9 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2423adantl 271 . . . . . . . 8 ((𝑦𝐴𝑧 = 𝐴) → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2522, 24rexbid 2367 . . . . . . 7 ((𝑦𝐴𝑧 = 𝐴) → (∃𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
2625adantll 459 . . . . . 6 (((𝐴 ∈ V ∧ 𝑦𝐴) ∧ 𝑧 = 𝐴) → (∃𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
2719, 26syl5bb 190 . . . . 5 (((𝐴 ∈ V ∧ 𝑦𝐴) ∧ 𝑧 = 𝐴) → ([𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
2811, 27sbcied 2850 . . . 4 ((𝐴 ∈ V ∧ 𝑦𝐴) → ([𝐴 / 𝑧][𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
2910, 28syl5bbr 192 . . 3 ((𝐴 ∈ V ∧ 𝑦𝐴) → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
3029expcom 114 . 2 (𝑦𝐴 → (𝐴 ∈ V → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑)))
312, 9, 30pm5.21ndd 653 1 (𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  [wsb 1685  wnfc 2206  wrex 2349  Vcvv 2601  [wsbc 2815
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816
This theorem is referenced by:  sbcrex  2893
  Copyright terms: Public domain W3C validator