ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdv GIF version

Theorem rexlimdv 2476
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 14-Nov-2002.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
Hypothesis
Ref Expression
rexlimdv.1 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
Assertion
Ref Expression
rexlimdv (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimdv
StepHypRef Expression
1 nfv 1461 . 2 𝑥𝜑
2 nfv 1461 . 2 𝑥𝜒
3 rexlimdv.1 . 2 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
41, 2, 3rexlimd 2474 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1433  wrex 2349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-17 1459  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-ral 2353  df-rex 2354
This theorem is referenced by:  rexlimdva  2477  rexlimdv3a  2479  rexlimdvw  2480  rexlimdvv  2483  trintssmOLD  3892  ssorduni  4231  funcnvuni  4988  dffo3  5335  smoiun  5939  tfrlem9  5958  ordiso2  6446  axprecex  7046  recexap  7743  zdiv  8435  btwnz  8466  lbzbi  8701
  Copyright terms: Public domain W3C validator