| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-riota | GIF version | ||
| Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 4887. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) |
| Ref | Expression |
|---|---|
| df-riota | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | crio 5487 | . 2 class (℩𝑥 ∈ 𝐴 𝜑) |
| 5 | 2 | cv 1283 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 1433 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 102 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | cio 4885 | . 2 class (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 9 | 4, 8 | wceq 1284 | 1 wff (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff set class |
| This definition is referenced by: riotaeqdv 5489 riotabidv 5490 riotaexg 5492 riotav 5493 riotauni 5494 nfriota1 5495 nfriotadxy 5496 cbvriota 5498 riotacl2 5501 riotabidva 5504 riota1 5506 riota2df 5508 snriota 5517 riotaund 5522 bdcriota 10674 |
| Copyright terms: Public domain | W3C validator |