| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rmobida | GIF version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| rmobida.1 | ⊢ Ⅎ𝑥𝜑 |
| rmobida.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rmobida | ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobida.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rmobida.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | pm5.32da 439 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 4 | 1, 3 | mobid 1976 | . 2 ⊢ (𝜑 → (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 5 | df-rmo 2356 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 6 | df-rmo 2356 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜒 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
| 7 | 4, 5, 6 | 3bitr4g 221 | 1 ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 Ⅎwnf 1389 ∈ wcel 1433 ∃*wmo 1942 ∃*wrmo 2351 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-eu 1944 df-mo 1945 df-rmo 2356 |
| This theorem is referenced by: rmobidva 2541 |
| Copyright terms: Public domain | W3C validator |