| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reubii | GIF version | ||
| Description: Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 22-Oct-1999.) |
| Ref | Expression |
|---|---|
| reubii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| reubii | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reubii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | reubiia 2538 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 ∈ wcel 1433 ∃!wreu 2350 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-eu 1944 df-reu 2355 |
| This theorem is referenced by: caucvgsrlemcl 6965 axcaucvglemcl 7061 axcaucvglemval 7063 |
| Copyright terms: Public domain | W3C validator |