ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcimdv GIF version

Theorem rspcimdv 2702
Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcimdv.1 (𝜑𝐴𝐵)
rspcimdv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rspcimdv (𝜑 → (∀𝑥𝐵 𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcimdv
StepHypRef Expression
1 df-ral 2353 . 2 (∀𝑥𝐵 𝜓 ↔ ∀𝑥(𝑥𝐵𝜓))
2 rspcimdv.1 . . 3 (𝜑𝐴𝐵)
3 simpr 108 . . . . . . 7 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐴)
43eleq1d 2147 . . . . . 6 ((𝜑𝑥 = 𝐴) → (𝑥𝐵𝐴𝐵))
54biimprd 156 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝐴𝐵𝑥𝐵))
6 rspcimdv.2 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
75, 6imim12d 73 . . . 4 ((𝜑𝑥 = 𝐴) → ((𝑥𝐵𝜓) → (𝐴𝐵𝜒)))
82, 7spcimdv 2682 . . 3 (𝜑 → (∀𝑥(𝑥𝐵𝜓) → (𝐴𝐵𝜒)))
92, 8mpid 41 . 2 (𝜑 → (∀𝑥(𝑥𝐵𝜓) → 𝜒))
101, 9syl5bi 150 1 (𝜑 → (∀𝑥𝐵 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1282   = wceq 1284  wcel 1433  wral 2348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603
This theorem is referenced by:  rspcdv  2704
  Copyright terms: Public domain W3C validator