![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspcimedv | GIF version |
Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rspcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcimedv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) |
Ref | Expression |
---|---|
rspcimedv | ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcimdv.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | simpr 108 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) | |
3 | 2 | eleq1d 2147 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
4 | 3 | biimprd 156 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐵)) |
5 | rspcimedv.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) | |
6 | 4, 5 | anim12d 328 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐴 ∈ 𝐵 ∧ 𝜒) → (𝑥 ∈ 𝐵 ∧ 𝜓))) |
7 | 1, 6 | spcimedv 2684 | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝐵 ∧ 𝜒) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓))) |
8 | 1, 7 | mpand 419 | . 2 ⊢ (𝜑 → (𝜒 → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓))) |
9 | df-rex 2354 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
10 | 8, 9 | syl6ibr 160 | 1 ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∃wex 1421 ∈ wcel 1433 ∃wrex 2349 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 |
This theorem is referenced by: rspcedv 2705 |
Copyright terms: Public domain | W3C validator |