| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbco4 | GIF version | ||
| Description: Two ways of exchanging two variables. Both sides of the biconditional exchange 𝑥 and 𝑦, either via two temporary variables 𝑢 and 𝑣, or a single temporary 𝑤. (Contributed by Jim Kingdon, 25-Sep-2018.) |
| Ref | Expression |
|---|---|
| sbco4 | ⊢ ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcom2 1904 | . . 3 ⊢ ([𝑥 / 𝑣][𝑦 / 𝑢][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑) | |
| 2 | nfv 1461 | . . . . 5 ⊢ Ⅎ𝑢[𝑣 / 𝑦]𝜑 | |
| 3 | 2 | sbco2 1880 | . . . 4 ⊢ ([𝑦 / 𝑢][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑣 / 𝑦]𝜑) |
| 4 | 3 | sbbii 1688 | . . 3 ⊢ ([𝑥 / 𝑣][𝑦 / 𝑢][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑) |
| 5 | 1, 4 | bitr3i 184 | . 2 ⊢ ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑) |
| 6 | sbco4lem 1923 | . 2 ⊢ ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑡][𝑦 / 𝑥][𝑡 / 𝑦]𝜑) | |
| 7 | sbco4lem 1923 | . 2 ⊢ ([𝑥 / 𝑡][𝑦 / 𝑥][𝑡 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | |
| 8 | 5, 6, 7 | 3bitri 204 | 1 ⊢ ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 [wsb 1685 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |