| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exsb | GIF version | ||
| Description: An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.) |
| Ref | Expression |
|---|---|
| exsb | ⊢ (∃𝑥𝜑 ↔ ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1459 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | 1 | sb8eh 1776 | . 2 ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
| 3 | sb6 1807 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 4 | 3 | exbii 1536 | . 2 ⊢ (∃𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 5 | 2, 4 | bitri 182 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 ∃wex 1421 [wsb 1685 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-sb 1686 |
| This theorem is referenced by: 2exsb 1926 |
| Copyright terms: Public domain | W3C validator |