ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsb GIF version

Theorem exsb 1925
Description: An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.)
Assertion
Ref Expression
exsb (∃𝑥𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem exsb
StepHypRef Expression
1 ax-17 1459 . . 3 (𝜑 → ∀𝑦𝜑)
21sb8eh 1776 . 2 (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
3 sb6 1807 . . 3 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
43exbii 1536 . 2 (∃𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
52, 4bitri 182 1 (∃𝑥𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1282  wex 1421  [wsb 1685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467
This theorem depends on definitions:  df-bi 115  df-sb 1686
This theorem is referenced by:  2exsb  1926
  Copyright terms: Public domain W3C validator