| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcth | GIF version | ||
| Description: A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.) |
| Ref | Expression |
|---|---|
| sbcth.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| sbcth | ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcth.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | ax-gen 1378 | . 2 ⊢ ∀𝑥𝜑 |
| 3 | spsbc 2826 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) | |
| 4 | 2, 3 | mpi 15 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 ∈ wcel 1433 [wsbc 2815 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 df-sbc 2816 |
| This theorem is referenced by: rabrsndc 3460 iota4an 4906 |
| Copyright terms: Public domain | W3C validator |