ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota4an GIF version

Theorem iota4an 4906
Description: Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iota4an (∃!𝑥(𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑)

Proof of Theorem iota4an
StepHypRef Expression
1 iota4 4905 . 2 (∃!𝑥(𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥](𝜑𝜓))
2 euiotaex 4903 . . . 4 (∃!𝑥(𝜑𝜓) → (℩𝑥(𝜑𝜓)) ∈ V)
3 simpl 107 . . . . 5 ((𝜑𝜓) → 𝜑)
43sbcth 2828 . . . 4 ((℩𝑥(𝜑𝜓)) ∈ V → [(℩𝑥(𝜑𝜓)) / 𝑥]((𝜑𝜓) → 𝜑))
52, 4syl 14 . . 3 (∃!𝑥(𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]((𝜑𝜓) → 𝜑))
6 sbcimg 2855 . . . 4 ((℩𝑥(𝜑𝜓)) ∈ V → ([(℩𝑥(𝜑𝜓)) / 𝑥]((𝜑𝜓) → 𝜑) ↔ ([(℩𝑥(𝜑𝜓)) / 𝑥](𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑)))
72, 6syl 14 . . 3 (∃!𝑥(𝜑𝜓) → ([(℩𝑥(𝜑𝜓)) / 𝑥]((𝜑𝜓) → 𝜑) ↔ ([(℩𝑥(𝜑𝜓)) / 𝑥](𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑)))
85, 7mpbid 145 . 2 (∃!𝑥(𝜑𝜓) → ([(℩𝑥(𝜑𝜓)) / 𝑥](𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑))
91, 8mpd 13 1 (∃!𝑥(𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1433  ∃!weu 1941  Vcvv 2601  [wsbc 2815  cio 4885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-sn 3404  df-pr 3405  df-uni 3602  df-iota 4887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator