ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbeqalb GIF version

Theorem sbeqalb 2870
Description: Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.)
Assertion
Ref Expression
sbeqalb (𝐴𝑉 → ((∀𝑥(𝜑𝑥 = 𝐴) ∧ ∀𝑥(𝜑𝑥 = 𝐵)) → 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem sbeqalb
StepHypRef Expression
1 bibi1 238 . . . . 5 ((𝜑𝑥 = 𝐴) → ((𝜑𝑥 = 𝐵) ↔ (𝑥 = 𝐴𝑥 = 𝐵)))
21biimpa 290 . . . 4 (((𝜑𝑥 = 𝐴) ∧ (𝜑𝑥 = 𝐵)) → (𝑥 = 𝐴𝑥 = 𝐵))
32biimpd 142 . . 3 (((𝜑𝑥 = 𝐴) ∧ (𝜑𝑥 = 𝐵)) → (𝑥 = 𝐴𝑥 = 𝐵))
43alanimi 1388 . 2 ((∀𝑥(𝜑𝑥 = 𝐴) ∧ ∀𝑥(𝜑𝑥 = 𝐵)) → ∀𝑥(𝑥 = 𝐴𝑥 = 𝐵))
5 sbceqal 2869 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵))
64, 5syl5 32 1 (𝐴𝑉 → ((∀𝑥(𝜑𝑥 = 𝐴) ∧ ∀𝑥(𝜑𝑥 = 𝐵)) → 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1282   = wceq 1284  wcel 1433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sbc 2816
This theorem is referenced by:  iotaval  4898
  Copyright terms: Public domain W3C validator