ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotaval GIF version

Theorem iotaval 4898
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotaval (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem iotaval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfiota2 4888 . 2 (℩𝑥𝜑) = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)}
2 vex 2604 . . . . . . 7 𝑦 ∈ V
3 sbeqalb 2870 . . . . . . . 8 (𝑦 ∈ V → ((∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜑𝑥 = 𝑧)) → 𝑦 = 𝑧))
4 equcomi 1632 . . . . . . . 8 (𝑦 = 𝑧𝑧 = 𝑦)
53, 4syl6 33 . . . . . . 7 (𝑦 ∈ V → ((∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜑𝑥 = 𝑧)) → 𝑧 = 𝑦))
62, 5ax-mp 7 . . . . . 6 ((∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜑𝑥 = 𝑧)) → 𝑧 = 𝑦)
76ex 113 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑧) → 𝑧 = 𝑦))
8 equequ2 1639 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
98equcoms 1634 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑥 = 𝑦𝑥 = 𝑧))
109bibi2d 230 . . . . . . . 8 (𝑧 = 𝑦 → ((𝜑𝑥 = 𝑦) ↔ (𝜑𝑥 = 𝑧)))
1110biimpd 142 . . . . . . 7 (𝑧 = 𝑦 → ((𝜑𝑥 = 𝑦) → (𝜑𝑥 = 𝑧)))
1211alimdv 1800 . . . . . 6 (𝑧 = 𝑦 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑧)))
1312com12 30 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → (𝑧 = 𝑦 → ∀𝑥(𝜑𝑥 = 𝑧)))
147, 13impbid 127 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑦))
1514alrimiv 1795 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑧(∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑦))
16 uniabio 4897 . . 3 (∀𝑧(∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑦) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = 𝑦)
1715, 16syl 14 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = 𝑦)
181, 17syl5eq 2125 1 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1282   = wceq 1284  wcel 1433  {cab 2067  Vcvv 2601   cuni 3601  cio 4885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-sn 3404  df-pr 3405  df-uni 3602  df-iota 4887
This theorem is referenced by:  iotauni  4899  iota1  4901  euiotaex  4903  iota4  4905  iota5  4907
  Copyright terms: Public domain W3C validator