| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbor | GIF version | ||
| Description: Logical OR inside and outside of substitution are equivalent. (Contributed by NM, 29-Sep-2002.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.) |
| Ref | Expression |
|---|---|
| sbor | ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sborv 1811 | . . . 4 ⊢ ([𝑧 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑧 / 𝑥]𝜑 ∨ [𝑧 / 𝑥]𝜓)) | |
| 2 | 1 | sbbii 1688 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 ∨ 𝜓) ↔ [𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 ∨ [𝑧 / 𝑥]𝜓)) |
| 3 | sborv 1811 | . . 3 ⊢ ([𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 ∨ [𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∨ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) | |
| 4 | 2, 3 | bitri 182 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∨ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) |
| 5 | ax-17 1459 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → ∀𝑧(𝜑 ∨ 𝜓)) | |
| 6 | 5 | sbco2v 1862 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 ∨ 𝜓) ↔ [𝑦 / 𝑥](𝜑 ∨ 𝜓)) |
| 7 | ax-17 1459 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 8 | 7 | sbco2v 1862 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| 9 | ax-17 1459 | . . . 4 ⊢ (𝜓 → ∀𝑧𝜓) | |
| 10 | 9 | sbco2v 1862 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓) |
| 11 | 8, 10 | orbi12i 713 | . 2 ⊢ (([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∨ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) |
| 12 | 4, 6, 11 | 3bitr3i 208 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 ∨ wo 661 [wsb 1685 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 |
| This theorem is referenced by: sbcor 2858 sbcorg 2859 unab 3231 |
| Copyright terms: Public domain | W3C validator |