![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sban | GIF version |
Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.) |
Ref | Expression |
---|---|
sban | ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbanv 1810 | . . . 4 ⊢ ([𝑧 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓)) | |
2 | 1 | sbbii 1688 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 ∧ 𝜓) ↔ [𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓)) |
3 | sbanv 1810 | . . 3 ⊢ ([𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∧ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) | |
4 | 2, 3 | bitri 182 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∧ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) |
5 | ax-17 1459 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑧(𝜑 ∧ 𝜓)) | |
6 | 5 | sbco2v 1862 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 ∧ 𝜓) ↔ [𝑦 / 𝑥](𝜑 ∧ 𝜓)) |
7 | ax-17 1459 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
8 | 7 | sbco2v 1862 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
9 | ax-17 1459 | . . . 4 ⊢ (𝜓 → ∀𝑧𝜓) | |
10 | 9 | sbco2v 1862 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓) |
11 | 8, 10 | anbi12i 447 | . 2 ⊢ (([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∧ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
12 | 4, 6, 11 | 3bitr3i 208 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 [wsb 1685 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 |
This theorem is referenced by: sb3an 1873 sbbi 1874 sbmo 2000 moanim 2015 sbabel 2244 nfrexdya 2401 cbvreu 2575 sbcan 2856 sbcang 2857 rmo3 2905 inab 3232 difab 3233 exss 3982 inopab 4486 bdcriota 10674 |
Copyright terms: Public domain | W3C validator |