ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sneqrg GIF version

Theorem sneqrg 3554
Description: Closed form of sneqr 3552. (Contributed by Scott Fenton, 1-Apr-2011.)
Assertion
Ref Expression
sneqrg (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))

Proof of Theorem sneqrg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 3409 . . . 4 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21eqeq1d 2089 . . 3 (𝑥 = 𝐴 → ({𝑥} = {𝐵} ↔ {𝐴} = {𝐵}))
3 eqeq1 2087 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
42, 3imbi12d 232 . 2 (𝑥 = 𝐴 → (({𝑥} = {𝐵} → 𝑥 = 𝐵) ↔ ({𝐴} = {𝐵} → 𝐴 = 𝐵)))
5 vex 2604 . . 3 𝑥 ∈ V
65sneqr 3552 . 2 ({𝑥} = {𝐵} → 𝑥 = 𝐵)
74, 6vtoclg 2658 1 (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  wcel 1433  {csn 3398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sn 3404
This theorem is referenced by:  sneqbg  3555
  Copyright terms: Public domain W3C validator