![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sneq | GIF version |
Description: Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sneq | ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2090 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 = 𝐴 ↔ 𝑥 = 𝐵)) | |
2 | 1 | abbidv 2196 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ 𝑥 = 𝐴} = {𝑥 ∣ 𝑥 = 𝐵}) |
3 | df-sn 3404 | . 2 ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} | |
4 | df-sn 3404 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
5 | 2, 3, 4 | 3eqtr4g 2138 | 1 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1284 {cab 2067 {csn 3398 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-sn 3404 |
This theorem is referenced by: sneqi 3410 sneqd 3411 euabsn 3462 absneu 3464 preq1 3469 tpeq3 3480 snssg 3522 sneqrg 3554 sneqbg 3555 opeq1 3570 unisng 3618 suceq 4157 snnex 4199 opeliunxp 4413 relop 4504 elimasng 4713 dmsnsnsng 4818 elxp4 4828 elxp5 4829 iotajust 4886 fconstg 5103 f1osng 5187 nfvres 5227 fsng 5357 fnressn 5370 fressnfv 5371 funfvima3 5413 isoselem 5479 1stvalg 5789 2ndvalg 5790 2ndval2 5803 fo1st 5804 fo2nd 5805 f1stres 5806 f2ndres 5807 mpt2mptsx 5843 dmmpt2ssx 5845 fmpt2x 5846 brtpos2 5889 dftpos4 5901 tpostpos 5902 eceq1 6164 ensn1g 6300 en1 6302 xpsneng 6319 xpcomco 6323 xpassen 6327 xpdom2 6328 phplem3 6340 phplem3g 6342 fidifsnen 6355 pm54.43 6459 expival 9478 |
Copyright terms: Public domain | W3C validator |