ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2rab GIF version

Theorem ss2rab 3070
Description: Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999.)
Assertion
Ref Expression
ss2rab ({𝑥𝐴𝜑} ⊆ {𝑥𝐴𝜓} ↔ ∀𝑥𝐴 (𝜑𝜓))

Proof of Theorem ss2rab
StepHypRef Expression
1 df-rab 2357 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 df-rab 2357 . . 3 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
31, 2sseq12i 3025 . 2 ({𝑥𝐴𝜑} ⊆ {𝑥𝐴𝜓} ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥 ∣ (𝑥𝐴𝜓)})
4 ss2ab 3062 . 2 ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥 ∣ (𝑥𝐴𝜓)} ↔ ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
5 df-ral 2353 . . 3 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
6 imdistan 432 . . . 4 ((𝑥𝐴 → (𝜑𝜓)) ↔ ((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
76albii 1399 . . 3 (∀𝑥(𝑥𝐴 → (𝜑𝜓)) ↔ ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
85, 7bitr2i 183 . 2 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)) ↔ ∀𝑥𝐴 (𝜑𝜓))
93, 4, 83bitri 204 1 ({𝑥𝐴𝜑} ⊆ {𝑥𝐴𝜓} ↔ ∀𝑥𝐴 (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1282  wcel 1433  {cab 2067  wral 2348  {crab 2352  wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rab 2357  df-in 2979  df-ss 2986
This theorem is referenced by:  ss2rabdv  3075  ss2rabi  3076
  Copyright terms: Public domain W3C validator