ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2rab Unicode version

Theorem ss2rab 3070
Description: Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999.)
Assertion
Ref Expression
ss2rab  |-  ( { x  e.  A  |  ph }  C_  { x  e.  A  |  ps } 
<-> 
A. x  e.  A  ( ph  ->  ps )
)

Proof of Theorem ss2rab
StepHypRef Expression
1 df-rab 2357 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 df-rab 2357 . . 3  |-  { x  e.  A  |  ps }  =  { x  |  ( x  e.  A  /\  ps ) }
31, 2sseq12i 3025 . 2  |-  ( { x  e.  A  |  ph }  C_  { x  e.  A  |  ps } 
<->  { x  |  ( x  e.  A  /\  ph ) }  C_  { x  |  ( x  e.  A  /\  ps ) } )
4 ss2ab 3062 . 2  |-  ( { x  |  ( x  e.  A  /\  ph ) }  C_  { x  |  ( x  e.  A  /\  ps ) } 
<-> 
A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
) )
5 df-ral 2353 . . 3  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  A. x
( x  e.  A  ->  ( ph  ->  ps ) ) )
6 imdistan 432 . . . 4  |-  ( ( x  e.  A  -> 
( ph  ->  ps )
)  <->  ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
) )
76albii 1399 . . 3  |-  ( A. x ( x  e.  A  ->  ( ph  ->  ps ) )  <->  A. x
( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps ) ) )
85, 7bitr2i 183 . 2  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
)  <->  A. x  e.  A  ( ph  ->  ps )
)
93, 4, 83bitri 204 1  |-  ( { x  e.  A  |  ph }  C_  { x  e.  A  |  ps } 
<-> 
A. x  e.  A  ( ph  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1282    e. wcel 1433   {cab 2067   A.wral 2348   {crab 2352    C_ wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rab 2357  df-in 2979  df-ss 2986
This theorem is referenced by:  ss2rabdv  3075  ss2rabi  3076
  Copyright terms: Public domain W3C validator