ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssi GIF version

Theorem abssi 3069
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
Hypothesis
Ref Expression
abssi.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
abssi {𝑥𝜑} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem abssi
StepHypRef Expression
1 abssi.1 . . 3 (𝜑𝑥𝐴)
21ss2abi 3066 . 2 {𝑥𝜑} ⊆ {𝑥𝑥𝐴}
3 abid2 2199 . 2 {𝑥𝑥𝐴} = 𝐴
42, 3sseqtri 3031 1 {𝑥𝜑} ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1433  {cab 2067  wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-in 2979  df-ss 2986
This theorem is referenced by:  ssab2  3078  abf  3287  intab  3665  opabss  3842  relopabi  4481  exse2  4719  tfrlem8  5957  frecabex  6007  fiprc  6315  nqprxx  6736  ltnqex  6739  gtnqex  6740  recexprlemell  6812  recexprlemelu  6813  recexprlempr  6822
  Copyright terms: Public domain W3C validator