ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssab2 GIF version

Theorem ssab2 3078
Description: Subclass relation for the restriction of a class abstraction. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
ssab2 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssab2
StepHypRef Expression
1 simpl 107 . 2 ((𝑥𝐴𝜑) → 𝑥𝐴)
21abssi 3069 1 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wa 102  wcel 1433  {cab 2067  wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-in 2979  df-ss 2986
This theorem is referenced by:  ssrab2  3079  zfausab  3920  exss  3982  dmopabss  4565  fabexg  5097
  Copyright terms: Public domain W3C validator