ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssddif GIF version

Theorem ssddif 3198
Description: Double complement and subset. Similar to ddifss 3202 but inside a class 𝐵 instead of the universal class V. In classical logic the subset operation on the right hand side could be an equality (that is, 𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴). (Contributed by Jim Kingdon, 24-Jul-2018.)
Assertion
Ref Expression
ssddif (𝐴𝐵𝐴 ⊆ (𝐵 ∖ (𝐵𝐴)))

Proof of Theorem ssddif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ancr 314 . . . . 5 ((𝑥𝐴𝑥𝐵) → (𝑥𝐴 → (𝑥𝐵𝑥𝐴)))
2 simpr 108 . . . . . . . 8 ((𝑥𝐵 ∧ ¬ 𝑥𝐴) → ¬ 𝑥𝐴)
32con2i 589 . . . . . . 7 (𝑥𝐴 → ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
43anim2i 334 . . . . . 6 ((𝑥𝐵𝑥𝐴) → (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
5 eldif 2982 . . . . . . 7 (𝑥 ∈ (𝐵 ∖ (𝐵𝐴)) ↔ (𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)))
6 eldif 2982 . . . . . . . . 9 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
76notbii 626 . . . . . . . 8 𝑥 ∈ (𝐵𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
87anbi2i 444 . . . . . . 7 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
95, 8bitri 182 . . . . . 6 (𝑥 ∈ (𝐵 ∖ (𝐵𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
104, 9sylibr 132 . . . . 5 ((𝑥𝐵𝑥𝐴) → 𝑥 ∈ (𝐵 ∖ (𝐵𝐴)))
111, 10syl6 33 . . . 4 ((𝑥𝐴𝑥𝐵) → (𝑥𝐴𝑥 ∈ (𝐵 ∖ (𝐵𝐴))))
12 eldifi 3094 . . . . 5 (𝑥 ∈ (𝐵 ∖ (𝐵𝐴)) → 𝑥𝐵)
1312imim2i 12 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵 ∖ (𝐵𝐴))) → (𝑥𝐴𝑥𝐵))
1411, 13impbii 124 . . 3 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐵 ∖ (𝐵𝐴))))
1514albii 1399 . 2 (∀𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵 ∖ (𝐵𝐴))))
16 dfss2 2988 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
17 dfss2 2988 . 2 (𝐴 ⊆ (𝐵 ∖ (𝐵𝐴)) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵 ∖ (𝐵𝐴))))
1815, 16, 173bitr4i 210 1 (𝐴𝐵𝐴 ⊆ (𝐵 ∖ (𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wal 1282  wcel 1433  cdif 2970  wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-in 2979  df-ss 2986
This theorem is referenced by:  ddifss  3202  inssddif  3205
  Copyright terms: Public domain W3C validator