| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5eqelr | GIF version | ||
| Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| syl5eqelr.1 | ⊢ 𝐵 = 𝐴 |
| syl5eqelr.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| syl5eqelr | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl5eqelr.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2085 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | syl5eqelr.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 4 | 2, 3 | syl5eqel 2165 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1284 ∈ wcel 1433 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 df-clel 2077 |
| This theorem is referenced by: dmrnssfld 4613 cnvexg 4875 opabbrex 5569 offval 5739 resfunexgALT 5757 abrexexg 5765 abrexex2g 5767 opabex3d 5768 nqprlu 6737 iccshftr 9016 iccshftl 9018 iccdil 9020 icccntr 9022 exprmfct 10519 |
| Copyright terms: Public domain | W3C validator |