ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exprmfct GIF version

Theorem exprmfct 10519
Description: Every integer greater than or equal to 2 has a prime factor. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
exprmfct (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)
Distinct variable group:   𝑁,𝑝

Proof of Theorem exprmfct
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 8657 . 2 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 eleq1 2141 . . . 4 (𝑥 = 1 → (𝑥 ∈ (ℤ‘2) ↔ 1 ∈ (ℤ‘2)))
32imbi1d 229 . . 3 (𝑥 = 1 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (1 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥)))
4 eleq1 2141 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ (ℤ‘2) ↔ 𝑦 ∈ (ℤ‘2)))
5 breq2 3789 . . . . 5 (𝑥 = 𝑦 → (𝑝𝑥𝑝𝑦))
65rexbidv 2369 . . . 4 (𝑥 = 𝑦 → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝𝑦))
74, 6imbi12d 232 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦)))
8 eleq1 2141 . . . 4 (𝑥 = 𝑧 → (𝑥 ∈ (ℤ‘2) ↔ 𝑧 ∈ (ℤ‘2)))
9 breq2 3789 . . . . 5 (𝑥 = 𝑧 → (𝑝𝑥𝑝𝑧))
109rexbidv 2369 . . . 4 (𝑥 = 𝑧 → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝𝑧))
118, 10imbi12d 232 . . 3 (𝑥 = 𝑧 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (𝑧 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑧)))
12 eleq1 2141 . . . 4 (𝑥 = (𝑦 · 𝑧) → (𝑥 ∈ (ℤ‘2) ↔ (𝑦 · 𝑧) ∈ (ℤ‘2)))
13 breq2 3789 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (𝑝𝑥𝑝 ∥ (𝑦 · 𝑧)))
1413rexbidv 2369 . . . 4 (𝑥 = (𝑦 · 𝑧) → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧)))
1512, 14imbi12d 232 . . 3 (𝑥 = (𝑦 · 𝑧) → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ ((𝑦 · 𝑧) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧))))
16 eleq1 2141 . . . 4 (𝑥 = 𝑁 → (𝑥 ∈ (ℤ‘2) ↔ 𝑁 ∈ (ℤ‘2)))
17 breq2 3789 . . . . 5 (𝑥 = 𝑁 → (𝑝𝑥𝑝𝑁))
1817rexbidv 2369 . . . 4 (𝑥 = 𝑁 → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝𝑁))
1916, 18imbi12d 232 . . 3 (𝑥 = 𝑁 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)))
20 1m1e0 8108 . . . . 5 (1 − 1) = 0
21 uz2m1nn 8692 . . . . 5 (1 ∈ (ℤ‘2) → (1 − 1) ∈ ℕ)
2220, 21syl5eqelr 2166 . . . 4 (1 ∈ (ℤ‘2) → 0 ∈ ℕ)
23 0nnn 8066 . . . . 5 ¬ 0 ∈ ℕ
2423pm2.21i 607 . . . 4 (0 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑝𝑥)
2522, 24syl 14 . . 3 (1 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥)
26 prmz 10493 . . . . . 6 (𝑥 ∈ ℙ → 𝑥 ∈ ℤ)
27 iddvds 10208 . . . . . 6 (𝑥 ∈ ℤ → 𝑥𝑥)
2826, 27syl 14 . . . . 5 (𝑥 ∈ ℙ → 𝑥𝑥)
29 breq1 3788 . . . . . 6 (𝑝 = 𝑥 → (𝑝𝑥𝑥𝑥))
3029rspcev 2701 . . . . 5 ((𝑥 ∈ ℙ ∧ 𝑥𝑥) → ∃𝑝 ∈ ℙ 𝑝𝑥)
3128, 30mpdan 412 . . . 4 (𝑥 ∈ ℙ → ∃𝑝 ∈ ℙ 𝑝𝑥)
3231a1d 22 . . 3 (𝑥 ∈ ℙ → (𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥))
33 simpl 107 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → 𝑦 ∈ (ℤ‘2))
34 eluzelz 8628 . . . . . . . . . 10 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
3534ad2antrr 471 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑦 ∈ ℤ)
36 eluzelz 8628 . . . . . . . . . 10 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
3736ad2antlr 472 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑧 ∈ ℤ)
38 dvdsmul1 10217 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑦 ∥ (𝑦 · 𝑧))
3935, 37, 38syl2anc 403 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑦 ∥ (𝑦 · 𝑧))
40 prmz 10493 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
4140adantl 271 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
4235, 37zmulcld 8475 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → (𝑦 · 𝑧) ∈ ℤ)
43 dvdstr 10232 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ (𝑦 · 𝑧) ∈ ℤ) → ((𝑝𝑦𝑦 ∥ (𝑦 · 𝑧)) → 𝑝 ∥ (𝑦 · 𝑧)))
4441, 35, 42, 43syl3anc 1169 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝑦𝑦 ∥ (𝑦 · 𝑧)) → 𝑝 ∥ (𝑦 · 𝑧)))
4539, 44mpan2d 418 . . . . . . 7 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → (𝑝𝑦𝑝 ∥ (𝑦 · 𝑧)))
4645reximdva 2463 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∃𝑝 ∈ ℙ 𝑝𝑦 → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧)))
4733, 46embantd 55 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧)))
4847a1dd 47 . . . 4 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦) → ((𝑦 · 𝑧) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧))))
4948adantrd 273 . . 3 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦) ∧ (𝑧 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑧)) → ((𝑦 · 𝑧) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧))))
503, 7, 11, 15, 19, 25, 32, 49prmind 10503 . 2 (𝑁 ∈ ℕ → (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁))
511, 50mpcom 36 1 (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  wrex 2349   class class class wbr 3785  cfv 4922  (class class class)co 5532  0cc0 6981  1c1 6982   · cmul 6986  cmin 7279  cn 8039  2c2 8089  cz 8351  cuz 8619  cdvds 10195  cprime 10489
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-1o 6024  df-2o 6025  df-er 6129  df-en 6245  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fzo 9153  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-prm 10490
This theorem is referenced by:  prmdvdsfz  10520  rpexp  10532
  Copyright terms: Public domain W3C validator